

Urban Places in the United States

- Vital, walkable, traditional urban places are rare in the US.
- But they are important:
 - For fighting climate change (Schwanen et al., 2012; Lehmann, 2016).
 - For public health (Widener & Shannon, 2014; Lachapelle et al., 2011).
 - For economic development (Loh et al., 2019).
- Their recent popularity, combined with rarity, leads to gentrification.
- We need to understand them and their distribution better:
 - To make it easier to design more of them.
 - To understand how to allocate resources, such as transit service.

What properties make neighborhoods and metros vital and walkable?

What can we learn about making cities more transit-friendly?

A Nation of Neighborhoods:

A Quantitative Understanding of US Neighborhoods and Metropolitan Areas

- American metro areas, and the neighborhoods they are made up of, fall into distinct types that can be quantitatively identified.
- By developing typologies based on features relevant to public transportation and the vitality of pedestrian-oriented urban places, we can better understand these places and the cities that contain them.
- This can also help us understand where public transit is successful, and how to improve it where it currently isn't.

How to characterize neighborhoods?

Some highlights of my techniques

Characterizing Neighborhoods: Data

- American Community Survey (ACS) data for population and housing
 - 2018 vintage
 - Available by block group
- Longitudinal Employer-Household Dynamics (LEHD) data for jobs
 - 2017 vintage for private and state jobs; 2015 vintage for Federal jobs
 - Available by block
- National Land Cover Database (NLCD) data to identify developed land
 - 2016 vintage
 - Available as 30-meter resolution rasters
- OpenStreetMap road network data to calculate road connectivity
 - 2020 vintage
 - Required some pre-processing to remove freeways

Characterizing Neighborhoods: Hexagonal Cells

- Each metro area is divided into ¼-mile radius hexagonal "neighborhoods."
- Water areas were removed.
- All data was assigned to these hexes using area-weighted integration.
- This allows combining data with different original geographies.
- This provides similar-sized geographies everywhere.
- Helps reduce the modifiable areal unit problem (MAUP).

Hex Cells in Baltimore

Procedure for collecting the various data sources into hex cell neighborhoods.

This took the majority of the time spent on the project.

Characterizing Neighborhoods: Cropping Data with NLCD Rasters

- NLCD rasters are produced by analyzing remote-sensing data.
- 30-m by 30-m pixels
- Used to identify "developed" land.
 - For my purposes, >20% artificial surface.
 - Much higher resolution than Census data.
- I used this for two purposes:
 - To identify fraction developed land in each neighborhood cell.
 - More important, to crop Census geographies to developed land.

NLCD Raster of Baltimore

Characterizing Neighborhoods: Cropping Data with NLCD Rasters

- For cropping purposes, I reduced the resolution to 180-m by 180-m pixels.
- I counted a pixel as developed if any of the 36 pixels combined to form it was developed.
- This avoids over-cropping due to data errors.
- It also made converting the rasters to vector objects for cropping tractable.

Cropping Raster for Baltimore

Characterizing Neighborhoods: Percent Ideal Walkshed

My "percent ideal walkshed" measure:

- Is the fraction of a ½-mile radius circle reachable by walking a half mile.
- Can be multiplied by density to measure adjusted or "experienced" density.
- Is calculated for each hex cell with these steps:
 - Identify the centroid of each hex cell.
 - Identify all streets within a half-mile walk.
 - Create a buffer to represent the depth of lots.
 - Divide buffer area by area of a half-mile circle.

What does this look like in practice?

Several ways to map cities

Activity Density and Road Connectivity in Baltimore

Density of Jobs + Population

High Connectivity = Well-Connected Street Grid (> 55% Ideal Walkshed)

Activity Density and Road Connectivity in Baltimore

Density (/ Sq. Mi.)	Number of Hexes	Percent of Population	Percent of Jobs
> 80,000	3	0.2%	4.8%
40,000 – 80,000	13	0.9%	5.3%
20,000 – 40,000	60	4.5%	11%
10,000 – 20,000	375	19%	22%
5,000 – 10,000	1,037	29%	29%
2,500 – 5,000	1,440	23%	16%
< 2,500	7,525	24%	12%

Percent Ideal Walkshed	Number of Hexes	Percent of Population	Percent of Jobs
> 65%	84	5.9%	7%
55% – 65%	307	13.3%	16%
45% – 55%	649	16%	17%
35% – 45%	1,498	19%	21%
25% – 35%	3,004	23%	19%
15% – 25%	3,721	18%	15%
< 15%	1,199	5.7%	5.4%

Land Use Types in Baltimore

Land Use Types in Baltimore

Number of Hexes	Percent of Population	Percent of Jobs
5,453	52%	5.2%
3,748	29%	21%
224	10%	9.6%
106	2.2%	11%
79	0.5%	5.1%
112	1.0%	4.7%
46	0.7%	6.1%
56	1.0%	5.7%
117	0.6%	12%
143	1.3%	7.1%
219	0.6%	7.4%
150	0.9%	5.1%
	Hexes 5,453 3,748 224 106 79 112 46 56 117 143 219	HexesPopulation5,45352%3,74829%22410%1062.2%790.5%1121.0%460.7%561.0%1170.6%1431.3%2190.6%

Housing Types in Baltimore

Housing Types in Baltimore

Housing Type	Number of Hexes	Fraction of Population	Fraction of Jobs
Pure Single-Family	4,911	18%	9.3%
Single-Family	1,742	11%	8.6%
Mixed Single-Family	1,454	17%	16%
Multi-Family: Small Buildings	980	31%	26%
Multi-Family: Large Buildings	261	5.7%	20%
Multi-Family: Mixed Types	817	15%	17%
Mobile Homes	131	0.5%	1.3%
Mixed Housing Types	47	0.5%	0.8%
Few Housing Units	110	0.1%	1.1%

Can we simplify this with a k-means typology?

Identifying distinct neighborhood "types"

Making a k-means typology of neighborhoods...but k is very large

- k-means clustering divides a dataset into k clusters based on distances in vector space.
- The investigator picks the value of k; I used 600:
 - This follows a rule-of-thumb estimate for k based on dataset size.
 - Also was roughly the number necessary to get reasonable clusters.
 - But still fails at very high densities: there are few neighborhoods at high densities, so they get classified by density alone.
- This is far too many to work with, so I classified them by density, connectivity, use, and housing type.
- This lets me map neighborhood types in different metro areas.

Neighborhood Types in Baltimore

Intensity = Walkshed-Adjusted Density

Neighborhood Types in New York

The Baltimore Beltway fits inside New York's very-high intensity area!

Neighborhood Types in Los Angeles

Broad, moderate density, but a very weak core

Neighborhood Types in Chicago

A monocentric region with a strong core but less outlying density

Neighborhood Types in Atlanta

An archipelago of "edge cities" in a sea of exurban densities

Neighborhood Types in Phoenix

Higher density than Atlanta, but less nucleation

Neighborhood Types in Washington

Our neighbor to the south is a hybrid of types

What does this tell us about metro areas?

Metro area types based on population and job distributions

Typologizing metro areas requires simplified neighborhood types

- To generate reasonable k-means clusters for metro areas, the number of neighborhood types was reduced to six.
- Focus was on the highest-density neighborhoods (above 11,000 activity units per square mile) as most relevant to vital urban places.
- Clusters created in two steps:
 - First step based on highest-density neighborhoods only.
 - Initial clusters divided into sub-clusters based on other neighborhoods.
- Two separate sets of clusters created:
 - One primarily based on population distribution.
 - One primarily based on job distribution.

Six Neighborhood Types Used to Typologize Metro Areas

Neighborhood Type	Description
Central Business District	 Majority or plurality office jobs > 120,000 activity units / sq. mile
High-Density Commercial	Majority commercial> 33,000 activity units / sq. mile
Medium-Density Commercial	Majority commercial11,000 – 33,000 activity units / sq. mile
High-Density Residential	Majority residential> 33,000 activity units / sq. mile
Medium-Density Residential (Large Apartments)	 Majority residential 11,000 – 33,000 activity units / sq. mile large apartment buildings
Medium-Density Residential (Small Apartments)	 Majority residential 11,000 – 33,000 activity units / sq. mile rowhouses / small apartment buildings

Dense Neighborhoods in Baltimore

- Very-High Density Central Business District
- High-Density Commercial
- Medium-Density Commercial
- High-Density Residential
- Medium Density-Residential (Large Apartments)
- Medium-Density Residential (Small Apartments and Rowhouses)

Dense Neighborhoods in Baltimore

Neighborhood Type	Number of Hexes	Fraction of Population	Fraction of Jobs
Central Business District	1	0.1%	2.0%
High-Density Commercial	24	1.0%	10%
Medium-Density Commercial	22	0.7%	5.4%
High-Density Residential	5	0.6%	0.6%
Medium-Density Residential (Large Apartments)	3	0.1%	0.3%
Medium-Density Residential (Small Apartments)	76	6.7%	3.2%

Population Clusters

Cluster	Metro Areas
1	New York
2a	Los Angeles, San Francisco
2b	Honolulu
2c	Chicago, Philadelphia, Boston
2d	Washington
3a	San Diego, San Jose, Ann Arbor (MI), Iowa City (IA)
3b	Seattle, Madison (WI), Santa Barbara (CA)
3c	Miami, Urbana-Champaign (IL), State College (PA)
3d	Baltimore, Milwaukee, Hartford, Worcester, 11 others
3e	Minneapolis, Denver, Portland, Austin, 5 others
3f	Dallas, Atlanta, Orlando, Pittsburgh, 29 others
4a	Corvallis (OR), Mount Pleasant (MI), Butte (MT)
4b	Providence, New Orleans, Buffalo, 14 others
4c	Houston, Las Vegas, 10 others
4d	Salt Lake City, Omaha, Durham (NC), 19 others
4e	Phoenix, Riverside, Detroit, Tampa, 122 others
4f	Greenville (SC), Bakersfield (CA), 669 others

Job Clusters

Cluster	Metro Areas
1	New York
2a	Honolulu
2b	Chicago, Boston, San Francisco
2 c	Washington, Seattle
3a	Philadelphia, Pittsburgh
3b	Los Angeles, San Jose
3c	Minneapolis, Denver, Baltimore
3d	Houston, Charlotte, Austin
4a	Dallas
4b	Rochester (MN), Bloomington (IL), 3 others
4c	Las Vegas, Milwaukee, New Orleans, 7 others
4d	Atlanta, Phoenix, St. Louis, Orlando, 9 others
4e	Cleveland, Louisville, 21 others
5a-5f	Miami, Jacksonville, Sacramento, Grand Rapids, San Diego, Providence, Detroit, Tampa, Memphis, Tulsa, Virginia Beach, Raleigh, 153 others
6a-6e	Riverside, El Paso, Stockton, Bakersfield, 688 others

Observations

- These clusters can reveal patterns of urban history:
 - Several population clusters are defined by high levels of medium-density, small-building residential; this correlates with Northeastern industrial cities.
 - The legacy of segregation is seen in differences in densities members of different races live at:
 - Median density for Blacks always above overall median for 60 largest metros.
 - Median density for whites always below overall median for 60 largest metros.
 - This density difference is largest in Rust Belt cities that experienced substantial "white flight" and smallest in cities in the West with Black populations below 10% of the total population.

Observations

- Patterns of urban economics are also visible:
 - High-income jobs are almost always at higher densities than low-income jobs.
 - Effect is largest in cities with lots of jobs at relatively high densities.
 - This is reversed for several low-income cities with industrial or agricultural economies.
- Hints as to what people perceive as urban density:
 - Qualitative assessments of density track more with job density than population density.
 - Los Angeles is a stereotypically sprawled city, but has population distribution most similar to San Francisco's.

What are the applications for public transportation?

Metro area types, neighborhood types, and transit service

Metro Area Types and Transit Ridership

- Four types of metro areas have high transit ridership:
 - Special cases:
 - Small-to-medium college towns.
 - Tiny tourism towns.
 - Larger metros:
 - Commuter rail suburbs
 - Major urban cores.
- For major urban cores, job density and centralization drive ridership:
 - Fraction of transit commuters correlates strongly with job-based clusters.
 - Population-based clusters correlate much less strongly.

The share of commuters who use public transit and the share of jobs in dense CBDs are strongly related.

Metro Area Types and Transit Ridership

- What is the causation here?
 - Does transit promote job density and centralization?
 - Do job density and centralization promote transit?
- What about non-commute trips?
 - Harder to measure (no Census Bureau data)
 - Important, especially for gender equity
- Quality of transit service is almost certainly relevant.

What neighborhood types are served?

- There are many aspects to good transit service:
 - Area served, frequency of service, hours of operation, affordability, and so on are important.
 - Harder-to-quantify issues of safety and equity also matter.
- One simple metric is areas served by rail transit:
 - These tend to have the highest-frequency service in a region.
 - Are indications of what routes a transit agency is investing in.
 - Need to exclude commuter rail because it rarely operates frequently and all day, and it tends to be much more expensive.

Dense Neighborhoods and Public Transit in Baltimore

Dense Neighborhoods and Public Transit in New York

Dense Neighborhoods and Public Transit in Los Angeles

Dense Neighborhoods and Public Transit in Washington

A Nation of Neighborhoods:

A Quantitative Understanding of US Neighborhoods and Metropolitan Areas

- American metro areas, and the neighborhoods they are made up of, fall into distinct types that can be quantitatively identified.
- By developing typologies based on features relevant to public transportation and the vitality of pedestrian-oriented urban places, we can better understand these places and the cities that contain them.
- This can also help us understand where public transit is successful, and how to improve it where it currently isn't.

Future Work

- An improved version of the study would consider spatial distribution of dense neighborhood types.
- Extending this study to world cities would be difficult, but would also be rewarding.
- Further examination of the relationships between demographics and city type is warranted.
- Further exploration of public transit service and neighborhood and city type would be quite interesting.

A Nation of Neighborhoods:

A Quantitative Understanding of US

Neighborhoods and Metropolitan Areas

DW Rowlands

rowlands@umbc.edu

≥ @82_Streetcar

Activity / Connectivity Maps

Activity Density and Road Connectivity in Atlanta

Density of Jobs + Population

Activity Density and Road Connectivity in Austin

Density of Jobs + Population

Activity Density and Road Connectivity in Baltimore

Density of Jobs + Population

Activity Density and Road Connectivity in Boston

Density of Jobs + Population

Activity Density and Road Connectivity in Chicago

Density of Jobs + Population

Activity Density and Road Connectivity in Dallas

Density of Jobs + Population

Activity Density and Road Connectivity in Denver

Density of Jobs + Population

Activity Density and Road Connectivity in Detroit

Density of Jobs + Population

Activity Density and Road Connectivity in Honolulu

Density of Jobs + Population

Activity Density and Road Connectivity in Houston

Density of Jobs + Population

Activity Density and Road Connectivity in Los Angeles

Density of Jobs + Population

Activity Density and Road Connectivity in Miami

Density of Jobs + Population

Activity Density and Road Connectivity in New York

Density of Jobs + Population

Activity Density and Road Connectivity in Philadelphia

Density of Jobs + Population

Activity Density and Road Connectivity in Phoenix

Density of Jobs + Population

Activity Density and Road Connectivity in Pittsburgh

Density of Jobs + Population

Activity Density and Road Connectivity in Portland

Density of Jobs + Population

Activity Density and Road Connectivity in San Francisco

Density of Jobs + Population

Activity Density and Road Connectivity in San Jose

Density of Jobs + Population

Activity Density and Road Connectivity in Seattle

Density of Jobs + Population

Activity Density and Road Connectivity in Washington

Density of Jobs + Population

Use Type Maps Land Use Types in Atlanta

Land Use Types in Austin

Land Use Types in Baltimore

Land Use Types in Boston

Land Use Types in Chicago

Land Use Types in Dallas

Land Use Types in Denver

Land Use Types in Detroit

Land Use Types in Honolulu

Land Use Types in Houston

Land Use Types in Los Angeles

Land Use Types in Miami

Land Use Types in New York

Land Use Types in Philadelphia

Land Use Types in Phoenix

Land Use Types in Pittsburgh

Land Use Types in Portland

Land Use Types in San Francisco

Land Use Types in San Jose

Land Use Types in Seattle

Land Use Types in Washington

Housing Type Maps

Housing Types in Atlanta

Housing Types in Austin

Housing Types in Baltimore

Housing Types in Boston

Housing Types in Chicago

Housing Types in Dallas

Housing Types in Denver

Housing Types in Detroit

Housing Types in Honolulu

> 90% Single-Family Homes

■ 75% - 90% Single-Family Homes

50% - 75% Single-Family Homes

Mixed Housing Types

> 50% Mixed-Type Apartments

> 50% Large Apartments

Mobile Homes and Vehicles

No Data

Housing Types in Houston

Housing Types in Los Angeles

Housing Types in Miami

Housing Types in New York

Housing Types in Philadelphia

Housing Types in Phoenix

Housing Types in Pittsburgh

Housing Types in Portland

Housing Types in San Francisco

Housing Types in San Jose

Housing Types in Seattle

Housing Types in Washington

Neighborhood Cluster Maps

Neighborhood Types in Atlanta

Neighborhood Types in Austin

Neighborhood Types in Baltimore

Neighborhood Types in Boston

Neighborhood Types in Chicago

Neighborhood Types in Dallas

Neighborhood Types in Denver

Neighborhood Types in Detroit

Neighborhood Types in Honolulu

Neighborhood Types in Houston

Neighborhood Types in Los Angeles

Neighborhood Types in Miami

Neighborhood Types in New York

Neighborhood Types in Philadelphia

Neighborhood Types in Phoenix

Neighborhood Types in Pittsburgh

Neighborhood Types in Portland

Neighborhood Types in San Francisco

Neighborhood Types in San Jose

Neighborhood Types in Seattle

Neighborhood Types in Washington

Metro Area Clustering and Rail Transit Maps Dense Neighborhoods and Public Transit in Atlanta

Dense Neighborhoods and Public Transit in Austin

Dense Neighborhoods and Public Transit in Baltimore

Dense Neighborhoods and Public Transit in Boston

Dense Neighborhoods and Public Transit in Chicago

Dense Neighborhoods and Public Transit in Dallas

Dense Neighborhoods and Public Transit in Denver

Dense Neighborhoods and Public Transit in Detroit

Dense Neighborhoods and Public Transit in Honolulu

Dense Neighborhoods and Public Transit in Houston

Dense Neighborhoods and Public Transit in Los Angeles

Dense Neighborhoods and Public Transit in Miami

Dense Neighborhoods and Public Transit in New York

Dense Neighborhoods and Public Transit in Philadelphia

Dense Neighborhoods and Public Transit in Phoenix

Dense Neighborhoods and Public Transit in Pittsburgh

Dense Neighborhoods and Public Transit in Portland

Dense Neighborhoods and Public Transit in San Francisco

Dense Neighborhoods and Public Transit in San Jose

Dense Neighborhoods and Public Transit in Seattle

Dense Neighborhoods and Public Transit in Washington

